
 23 Dec 2025

Abstract

This guide addresses a cluster of tricky but practical problems in causal

coding: how to represent oppositeness, sentiment/valence, and

“despite” constructions in a way that stays close to ordinary language and

remains auditable.

Many causal mapping and systems traditions address these issues by quickly

“variablising”: treating factor labels as variables, and links as signed (and

sometimes weighted) relationships. That can be powerful, but it also

introduces strong extra commitments (about polarity, scales, functional form,

and what counts as “more/less”) that are often not warranted by ordinary

narrative text.

Instead we take a piece-by-piece approach:

1. We start with combining opposites as a conservative label convention plus

an explicit transform over a links table.

2. We then “turn 45 degrees” to the different-but-overlapping problem of

sentiment, which becomes especially useful/necessary when doing AI-

assisted coding and embedding-based aggregation. Sentiment and opposites

are hard to combine cleanly.

🌻 Combining opposites, sentiment

2026-02-02 Working Papers © Causal Map Ltd 2026 · causalmap.app · CC BY-NC 4.0

https://causalmap.app/
https://creativecommons.org/licenses/by-nc/4.0/

3. We then introduce “despite” coding for countervailing conditions (“E

happened despite Z”) without pretending that Z “caused” E in the ordinary

way.

We end by noting some hard cases where these systems collide.

See also: Minimalist coding for causal mapping; A formalisation of causal

mapping; Magnetisation; A simple measure of the goodness of fit of a causal theory

to a text corpus.

Intended audience: practitioners doing causal coding from narrative text

(especially at scale / with AI assistance) who keep running into polarity/valence

edge cases.

Unique contribution (what this guide adds):

A conservative opposites convention + transform (combine opposites

while retaining flip status).

A clear separation between oppositeness and sentiment (why they overlap

in practice but don’t collapse cleanly).

A scalable encoding for “despite” clauses as a link type/tag, rather than mis-

coding them as ordinary causes.

Introduction

In the first part of this guide we dealt only with undifferentiated causal links which

simply say “C influenced E”, or more precisely: “Source S claims/believes that C

influenced E.” This is the minimalist representation: a links table whose rows are

individual causal claims with provenance (source id + quote) and whose columns

include at minimum Cause and Effect labels.

Minimalist-style causal links are commonly used in (at least) two ways:

2026-02-02 Working Papers © Causal Map Ltd 2026 · causalmap.app · CC BY-NC 4.0

file:///C:/minimalist
file:///C:/Users/Zoom/My%20Drive%20%28hello%40causalmap.app%29/Causal%20Map/20-29%20Platforms%20and%20Documentation/20%20all%20platforms/blog_builder/garden_generated_site/001%20Working%20Papers/006%20A%20formalisation%20of%20causal%20mapping.html
file:///C:/Users/Zoom/My%20Drive%20%28hello%40causalmap.app%29/Causal%20Map/20-29%20Platforms%20and%20Documentation/20%20all%20platforms/blog_builder/garden_generated_site/001%20Working%20Papers/006%20A%20formalisation%20of%20causal%20mapping.html
file:///C:/Users/Zoom/My%20Drive%20%28hello%40causalmap.app%29/Causal%20Map/20-29%20Platforms%20and%20Documentation/20%20all%20platforms/blog_builder/garden_generated_site/001%20Working%20Papers/900%20Magnetisation.html
file:///C:/Users/Zoom/My%20Drive%20%28hello%40causalmap.app%29/Causal%20Map/20-29%20Platforms%20and%20Documentation/20%20all%20platforms/blog_builder/garden_generated_site/001%20Working%20Papers/900%20A%20simple%20measure%20of%20the%20goodness%20o-de16cb.html
file:///C:/Users/Zoom/My%20Drive%20%28hello%40causalmap.app%29/Causal%20Map/20-29%20Platforms%20and%20Documentation/20%20all%20platforms/blog_builder/garden_generated_site/001%20Working%20Papers/900%20A%20simple%20measure%20of%20the%20goodness%20o-de16cb.html
https://causalmap.app/
https://creativecommons.org/licenses/by-nc/4.0/

Event-claim reading (QuIP-style): interpret a link as a claim about a past

episode (“C happened; E happened; C made a difference to E”), with an open

question of how far it generalises.

Factor-relation reading: treat links as claims about influence relations

among factors, without committing to what happened in any specific case.

In Part 1 we also introduced hierarchical factor labels using the ; separator,

where C; D can be read as “D, an example of / instance of C”, and can later be

rewritten (zoomed) to a higher level by truncating the label.

This guide (Part 2) adds three extensions that remain compatible with minimalist

link coding:

Opposites conventions in factor labels (a label-level device).

Sentiment/valence as an additional annotation layer (useful especially with

AI coding).

Despite coding to capture countervailing conditions without misrepresenting

them as ordinary causes.

We will describe the conventions in app-independent terms. (The Causal Map app

happens to implement these ideas as part of a standard “filter pipeline”, but the

logic is not app-specific.)

Combining opposites

The problem

In everyday coding, we often end up with “opposite” factors like:

Employment vs Unemployment

Good health vs Poor health

Fit vs Not fit

2026-02-02 Working Papers © Causal Map Ltd 2026 · causalmap.app · CC BY-NC 4.0

https://causalmap.app/
https://creativecommons.org/licenses/by-nc/4.0/

If we keep these as unrelated labels, we make downstream analysis harder. For

example:

When we query for “health”, we may miss evidence coded as “illness”.

We cannot easily compare (or combine) evidence for Fit -> Happy with

evidence for Not fit -> Not happy without manually re-aligning them.

Many causal mapping traditions solve this by treating factors as variables with

signed links. Here we describe a simpler alternative that stays close to ordinary

language and avoids variable semantics “by default”.

The convention: mark opposites in labels

To signal that two factor labels are intended as opposites, use the ~ prefix:

Y and ~Y

We talk about opposites rather than plus/minus because this avoids implying

valence or sentiment. For example:

Smoking is the opposite of ~Smoking (not smoking), but which one is “good”

depends on context.

Non-hierarchical opposites are straightforward:

Eating vegetables

~Eating vegetables

Smoking

~Smoking

The useful part: apply a transform/filter to a links table
(and/or a map view)

The convention above is only a convention until we do something with it. The next

step is to apply an explicit transform to a links table (and then to whatever views

are derived from it).

2026-02-02 Working Papers © Causal Map Ltd 2026 · causalmap.app · CC BY-NC 4.0

https://causalmap.app/
https://creativecommons.org/licenses/by-nc/4.0/

The transform is:

1. Detect opposite pairs that are present (both Y and ~Y appear in the current

dataset).

2. Rewrite any occurrence of ~Y to Y.

3. Record, for each link endpoint, whether it was flipped (e.g. flipped_cause,

flipped_effect).

After this transform:

We can aggregate evidence for Y and ~Y under a single canonical factor label Y

without losing the original meaning, because we still know which

endpoints were flipped.

A link has two local “polarities”: whether the cause label was flipped, and

whether the effect label was flipped.

If exactly one end is flipped, the overall relationship direction is “reversed” in

the intuitive sense (compared to the unflipped link).

If both ends are flipped, the overall relationship direction is not reversed, but

the evidence is still distinct (it came from the opposite-on-both-ends claim).

Crucially: no information is lost by the transform, because flip-status remains

attached to the evidence. You can always reconstruct the original statement-level

content from the transformed table.

This general “apply transforms to a links table; then render a map/table view of the

transformed data” is the same idea as the filter pipeline described in the user-guide

material: filters are operations over a links table, and maps are derived views of the

filtered/transformed links.

Opposites coding within a hierarchy

When using hierarchical labels (with ;), the ~ sign may appear:

at the very start of the whole label, and/or

2026-02-02 Working Papers © Causal Map Ltd 2026 · causalmap.app · CC BY-NC 4.0

https://causalmap.app/
https://creativecommons.org/licenses/by-nc/4.0/

at the start of any component within the label.

The same transform idea applies: to “combine opposites” we flip components so

that opposites align at each hierarchical level.

Opposites within components of a hierarchy

Sometimes we need ~ within components, e.g.:

Healthy habits; eating vegetables

~Healthy habits; ~eating vegetables

and:

Healthy habits; ~smoking (not smoking is a healthy habit)

~Healthy habits; smoking (smoking is an unhealthy habit)

After combining opposites, these pairs can be aligned under shared canonical

labels while retaining flip status per component (so we do not collapse “healthy”

into “unhealthy” or vice versa by accident).

Bivalent variables?

Opposites coding is not the same as assuming that every factor is a bivalent

variable (present vs absent). We are not claiming exhaustiveness: it is not the case

that everything must be either Wealthy or Poor, and it is often wrong to treat

“absence” as having causal powers.

Opposites coding is a practical device used only where:

both poles occur naturally in the text and therefore in the coding, and

it would usually be incoherent to apply both poles simultaneously in the same

sense.

2026-02-02 Working Papers © Causal Map Ltd 2026 · causalmap.app · CC BY-NC 4.0

https://causalmap.app/
https://creativecommons.org/licenses/by-nc/4.0/

Which pairs of factors should we consider for opposites
coding?

Use opposites coding for a pair of factors X and Y (i.e. recode Y as ~X or recode X as

~Y) when both occur in the data and are broadly opposites.

If in doubt about which member to treat as the canonical label, we usually pick X as

the “primary” member if it is:

usually considered as positive / beneficial / valuable, and/or

usually associated with “more” of something rather than “less” of something.

Alternative convention (explicit opposite pairing)

Sometimes you may have pairs that are conceptually opposite but do not share a

clean string form like Y vs ~Y (e.g. Wealthy vs Poor).

In that case, use an explicit pairing tag so that a deterministic transform can

combine them later. For example:

Wealthy [1]

Poor [~1]

This makes the pairing unambiguous: Poor [~1] is declared to be the opposite of

Wealthy [1]. A “combine opposites” transform can then rewrite the opposite-

labelled item to the canonical label while recording flip status (exactly as described

above). This is the same general idea as the “transform filters temporarily relabel

factors” pattern in the filter pipeline documentation (see content/999 Causal Map

App/080 Analysis Filters Filter links tab ((filter-link-tab)).md), but the

logic is independent of any particular software.

2026-02-02 Working Papers © Causal Map Ltd 2026 · causalmap.app · CC BY-NC 4.0

https://causalmap.app/
https://creativecommons.org/licenses/by-nc/4.0/

What can we do with opposites once we have them?

Once opposites are marked (and optionally combined via an explicit transform), we

can apply ordinary operations to a links table and then render useful views:

Querying: searching for Y can intentionally retrieve both Y and ~Y evidence

(depending on whether you search pre- or post-transform).

Aggregation without collapse: you can summarise evidence under a

canonical label Y while still distinguishing which claims involved the opposite

sense via flip flags.

Visualisation: you can render a map from the transformed links table and

style links differently depending on whether the cause and/or effect endpoint

was flipped, so viewers can see “this includes opposite-evidence” rather than

mistaking it for ordinary evidence.

This “links table → transforms → map/table view” pattern is the same general idea

as a filter pipeline (implemented in many tools; the Causal Map app is one).

Adding sentiment

Polarity of factor labels

There are challenges with coding and validating concepts which on the one hand

could be seen to have polarity from a quantitative point of view and on the other

hand may have positive or negative sentiment associated with them. Quantitative

polarity and subjective sentiment often overlap in confusing ways. When coding,

distinguishing between opposites like employment and unemployment is usually

important: they can be viewed as opposites, but each pole has a distinct meaning

which is more than just the absence of the other. We can call these "bipolar"

concepts after (Goertz, 2020).

2026-02-02 Working Papers © Causal Map Ltd 2026 · causalmap.app · CC BY-NC 4.0

https://www.zotero.org/google-docs/?Ut0IBG
https://causalmap.app/
https://creativecommons.org/licenses/by-nc/4.0/

However, though employment and unemployment can be seen as opposites from a

"close level" view, at a more general or abstract level, they could both fall under a

category like economic issues. Their NLP embeddings may have surprisingly high

cosine similarity.

For other pairs like not having enough to eat, and having too much to eat, there are

multiple opposites (which may appear frequently as a causal factor) with an

intervening zero (which may not be mentioned very often).

Coding these different kinds of concept pairs can be difficult and depends on use

and context. For these and other reasons, our naive approach codes employment

and unemployment as well as not having enough to eat, and having too much to eat

separately.**

How to add sentiment?

You can now auto-code the sentiment of the consequence factor in each link.

You only have to do this once, and it takes a little while, so wait until you’ve

finished coding all your links.

When you are ready, click on the File tab, and under the ‘About this file’, there’s the

‘ADD SENTIMENT’ button. You just have to click on it and wait for the magic to

happen

Design sem nome (1).png

So each claim (actually, the consequence of each claim) now has a sentiment, either

-1, 0 or 1.

Many links are actually a bundle of different claims. We can calculate the

sentiment of any bundle, as simply the average sentiment. So an average sentiment

of -1 means that all the claims had negative sentiment. An average of zero means

2026-02-02 Working Papers © Causal Map Ltd 2026 · causalmap.app · CC BY-NC 4.0

https://causalmap.app/
https://creativecommons.org/licenses/by-nc/4.0/

there were many neutral sentiments and/or the positive and negative sentiments

cancel each other out.

Only the last part is coloured, because the colour only expresses the sentiment of

the effect, not the cause.

Once you have autocoded sentiment for your file, you can switch it on or off using

🎨 Formatters: Colour links.

Tip

When displaying sentiment like this, reduce possible confusing by making sure that

you either use only neutral factor labels like Health rather than Good health or

Improved Health: an exception is if you have pairs of non-neutral labels like both

Poor health alongside Good health. You can do this either in your raw coding or

using ✨ Transforms Filters: 🧲 Magnetic labels or 🗃️ Canonical workflow

2026-02-02 Working Papers © Causal Map Ltd 2026 · causalmap.app · CC BY-NC 4.0

file:///C:/Users/Zoom/My%20Drive%20%28hello%40causalmap.app%29/Causal%20Map/20-29%20Platforms%20and%20Documentation/20%20all%20platforms/blog_builder/garden_generated_site/001%20Working%20Papers/%F0%9F%8E%A8%20Formatters%20Colour%20links%208094b307a2284aa7a95e2d392d689362.md
file:///C:/Users/Zoom/My%20Drive%20%28hello%40causalmap.app%29/Causal%20Map/20-29%20Platforms%20and%20Documentation/20%20all%20platforms/blog_builder/garden_generated_site/001%20Working%20Papers/%E2%9C%A8%20Transforms%20Filters%20%F0%9F%A7%B2%20Magnetic%20labels%209452d8de42e2466ca14c68ff0a67b6bb.md
file:///C:/Users/Zoom/My%20Drive%20%28hello%40causalmap.app%29/Causal%20Map/20-29%20Platforms%20and%20Documentation/20%20all%20platforms/blog_builder/garden_generated_site/001%20Working%20Papers/%F0%9F%97%83%EF%B8%8F%20Canonical%20workflow%2038ec32c8ce5546f780e4c79a7ad6caf8.md
https://causalmap.app/
https://creativecommons.org/licenses/by-nc/4.0/

Adding some colour: a discussion of the problem of
visualising contrary meanings

The problem

We’ve already described our approach to making sense of texts at scale by almost-

automatically coding the causal claims within them, encoding each claim (like

“climate change means our crops are failing”) as a pair of factor labels (“climate

change” and “our crops are failing”): this information is visualised as one link in a

causal map. We use our “coding AI” to code most of the causal claims within a set

of documents in this way. We have had good success doing this quickly and at scale

without providing any kind of codebook: the AI is free to create whatever factor

labels it wants.

There is one key remaining problem with this approach. Here is the background to

the problem: if the coding AI is provided with very long texts, it tends to skip many

of the causal claims in fact contained in the documents. Much shorter chunks of

text work best. As we work without a codebook, this means that the AI produces

hundreds of different factor labels which may overlap substantially in meaning. In

turn this means that we have to cluster the labels in sets of similar meaning (using

phrase embeddings and our “Clustering AI”) and find labels for the sets. This all

works nicely.

But the problem is that, when we use phrase embeddings to make clusters of

similar labels, seeming opposites often have high cosine similarity. Unemployment

and employment vectors are similar – they would for example often appear on the

same pages of a book – and both are quite different from a phrase like, say,

"climate change". But this is unsatisfactory because if in the raw text we had a link

describing how someone lost their job, coded with an arrow leading to a factor

unemployment alongside another piece of text describing how someone gained

work, represented by an arrow pointing to employment if these two labels are

2026-02-02 Working Papers © Causal Map Ltd 2026 · causalmap.app · CC BY-NC 4.0

https://causalmap.app/
https://creativecommons.org/licenses/by-nc/4.0/

combined, say into employment or employment issues the items look very similar

and we seem to have lost some essential piece of information.

Can’t we use opposites coding?

In ordinary manual coding (see ➕➖ Opposites) we solve this problem by

marking some factors as contrary to others using our ~ notation (in which

~Employment can stand for Unemployment, Bad employment, etc) and this works

well. However while it is possible to get the coding AI to code using this kind of

notation, it is not part of ordinary language and is therefore not understood by the

embeddings API: the ~ is simply ignored even more often than the difference

between Employment and Unemployment. In order to stop factors like

employment and unemployment ending up in the same cluster it is possible to

exaggerate the difference between them by somehow rewriting employment as, say,

“really really crass absence of employment” but this is also unsatisfactory (partly

because all the factors like really really crass X tend to end up in the same cluster).

New solution

So our new solution is simply to accept the way the coding-AI uses ordinary

language labels like employment and unemployment and to accept the way the

embedding-AI clusters them together. Instead, we recapture the lost “negative”

meaning with a third AI we call the “labelling AI”. This automatically codes the

sentiment of each individual causal claim so that each link is given a sentiment of

either +1, 0 or -1. For this third step we use a chat API. The instruction to this third

AI is:

"I am going to show you a numbered list of causal claims, where different

respondents said that one thing ('the cause') causally influenced another ('the

2026-02-02 Working Papers © Causal Map Ltd 2026 · causalmap.app · CC BY-NC 4.0

file:///C:/Users/Zoom/My%20Drive%20%28hello%40causalmap.app%29/Causal%20Map/20-29%20Platforms%20and%20Documentation/20%20all%20platforms/blog_builder/garden_generated_site/001%20Working%20Papers/%E2%9E%95%E2%9E%96%20Opposites%2053401812ec144ec48107a45a72ac9f62.md
https://causalmap.app/
https://creativecommons.org/licenses/by-nc/4.0/

effect') together with a verbatim quote from the respondent explaining how

the cause led to the effect.

The claims are listed in this format: 'quote ((cause —> effect))'.

The claims and respondents are not related to one another so treat each

separately.

For each claim, report its sentiment: does the respondent think that the effect

produced by the cause is at least a bit good (+1), at least a little bad (-1) or

neutral (0).

Consider only what the respondent thinks is good or bad, not what you think.

If you are not sure, use the neutral option (0).

NEVER skip any claims. Provide a sentiment for every claim."

The previous solution coloured the whole link which was fine in most cases but led

to some really confusing and incorrect coding where the influence factor was

involved in the opposite sense, as in Access to activities below. One might assume

that the red links actually involve some kind of negative (or opposite?) access to

activities, but we don't actually know that because it wasn't coded as such. Other

alternatives would be to also automatically separately code the sentiment of the

first part of the arrow, but this doesn't work because sometimes the sentiment is

2026-02-02 Working Papers © Causal Map Ltd 2026 · causalmap.app · CC BY-NC 4.0

https://causalmap.app/
https://creativecommons.org/licenses/by-nc/4.0/

not in fact negative. We would have to somehow automatically code whether the

influence factor is meant in an opposite or contrary sense but this is hard to do.

**

2026-02-02 Working Papers © Causal Map Ltd 2026 · causalmap.app · CC BY-NC 4.0

https://causalmap.app/
https://creativecommons.org/licenses/by-nc/4.0/

